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Macroscopic definition—Intensive entropy is a state property of the system. For a differential
change in state of a closed simple system (no internal temperature gradients or composition gradients
and no internal rigid, adiabatic, or impermeable walls).? the differential entropy change of the sys-
tem 1s equal to the heat absorbed by the system along a reversible path divided by the absolute tem-
perature of the system at the surface where heat is transferred.

dQ

—rey 4.1
ds =

Sys

where dS is the entropy change of the system. We will later show that this definition is consistent
with the microscopic definition.

Microscopic definition—Entropy i1s a measure of the molecular disorder of the system. Its
value 1s related to the number of microscopic states available at a particular macroscopic state. Spe-
cifically, for a system of fixed energy and number of particles, N,

S.=kln(p;) or AS= kln(f—)—z) 4.2
I

where p; is the number of microstates in the i macrostate, k = R/N,. We define microstates and mac-
rostates in the next section.

For a single state In(1) = 0. At absolute 0, in a perfect crystal with no defects etc.
Entropy of different aspects of a system, conformational entropy, translational entropy

A contribution to energy that is linear in temperature 4



Macroscopic definition—Intensive entropy is a state property of the system. For a differential
change in state of a closed simple system (no internal temperature gradients or composition gradients
and no internal rigid, adiabatic, or impermeable walls),? the differential entropy change of the sys-
tem is equal to the heat absorbed by the system along a reversible path divided by the absolute tem-
perature of the system at the surface where heat is transferred.

dQ.
dS= ___%’_91 4.1
rvys

where dS is the entropy change of the system. We will later show that this definition is consistent
with the microscopic definition.
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Constant Temperature (Isothermal) Pathway

The behavior of entropy at constant temperature is more difficult to generalize in the absence of
charts and tables because dQ,,, depends on the state of aggregation. For the ideal gas, dU =0 =
dQ — PdV, dQ = RTdV/¥, and plugging into Eqn. 4.13,

i Y2 §i% = Rn| 22
O isotrermal. AS'E = Rln|:-V_|j| or| A5 = - n[;ﬂ (ig) 4.22

For a liquid or solid, the effect of isothermal pressure of volume change is small as a first approxima-
tion; the precise relations for detailed calculations will be developed in Chapters 6-8. Looking at the
steam tables at constant temperature, entropy is very weakly dependent on pressure for liquid
water. This result may be generalized to other liquids below 7, = 0.75 and also to solids. For con-
densed phases, to a first approximation, entropy can be assumed to be independent of pressure (or
volume) at fixed temperature.

B
Q= / TdS
T, - A > B A
T A \ a
‘ N [sotherm
Te 1 D ~) C yya b
P /7.
/ / /| Adiabat
- - )
8, S S - '
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Figure 2: A Carnot cycle acting as a heat engine, ilustrated on a 67
temperature-entropy diagram. The cycle takes place between a hot
reservoir at lemperature Ty, and a cold reservoir at temperature Te. The V

vertcal axis is temperature, the horizontal axis Is entropy.



4.2 THE MICROSCOPIC VIEW OF ENTROPY Statistical Thermodynamics (Mechanics)

Entropy and Spatial Distributions: Configurational Entropy

Box A BoxB BoxA BoxB Box A Box B BoxA BoxB
1 1 2 1 2
2 2 1
Microstate & Microstate / Microstate y Microstate &

Figure 4.1 Hlustration of configurational arrangements of two molecules in two boxes, showing the
microstates. Not that [3 and y would have the same macroscopic value of pressure.

between zero, one, and two particles in a box, but could not distinguish which particles are present.
Therefore, microstates « and o are different macrostates because the distribution of particles is dif-
ferent; however, microstates / and y give the same macrostate. Thus, from our four microstates, we
have only three macrostates.

Table 4.1 llustration of Macrostates for Two Particles and Two Boxes

Macrostate
# of microstates
#in box A #in box B
0 2 1 0.25
1 | 2 0.5

2 0 1 0.25




What happens when we consider more particles? It turns out that the total number of
microstates for N particles in M boxes is M™, so the counting gets tedious. For five particles in two

Table 4.2 Microstates for the Second and Third Macrostates for Five Particles Distributed in Two Boxes

(@) One particle in Box A (b) Two particles in Box A
Box A Box B Box A Box B | Box A Box B
1 2345 1,2 34,5 24 1,3,5
2 1,3,4,5 1,3 24,5 2.5 1,34
3 1,2,4,5 1.4 23,5 34 1,2,5
R 1,2,3,5 1,5 234 3.5 1,24
5 1,2,3,4 2,3 1,4,5 4.5 12,3

;Ihefe are M N 23 = 32 mi(':rostates

no?f"”tﬁﬁ p ' Microstates Pﬁf::}m: ;
0 5 | 0.0313
| 4 5 0.1563
2 3 10 03125
3 2 10 03125
4 | 5 0.1563
5 0 1 0.0313 8




P = S — 4.4 0 General for-
M mula for number of
! microstates for N
H mij! particles in M
boxes.

my; is the number of particles in the /" box at the ;" macrostate.

microstates for arranging N particles in two boxes, with m particles in one of the boxes, is:”

1
Nj.

WN.—m)
m}! (Nj mj).

4.3

Pj=



Entropy and Isothermal Volume/Pressure Change for
Ideal Gases

Suppose an insulated container, partitioned into two equal volumes, contains N molecules of an
ideal gas in one section and no molecules in the other. When the partition is withdrawn, the mole-
cules quickly distribute themselves uniformly throughout the total volume. How is the entropy
afTected? Let subscript 1 denote the initial state and subscript 2 denote the final state. Here we take
for granted that the final state will be evenly distributed.

We can develop an answer by applying Eqn. 4.4, and noting that 0! = 1:

- N _ . N!

Pr=zor 0 P2 (v 2y

2
/o - w2020

2
Substituting into Eqn. 4.2, and recognizing ln[(-zj\-)) !] = Zln(%')! .

AS = §,—8, = kin(py/py) = k{In(N) - 2In[(N/2)!]}

Stirling’s approximation may be used for In(N!) when N > 100,

In(N!) = NIn(N) - N 4.5
The approximation is a mathematical simplification, and not, in itself, related to thermodynamics.

= AS = K[NIn(N)-N-2(N/2)In(N/2)+ 2(N/2)]
= kE[NIn(N) - N-NIn(N)+ NIn(2) + N]
= kNIn(2) = AS = nRIn(2)



Therefore, entropy of the system has increased by a factor of In(2) when the volume has doubled at
constant 7. Suppose the box initially with particles is three times as large as the empty box. In this
case the increase in volume will be 33%. Then what is the entropy change? The trick is to imagine
four equal size boxes, with three equally filled at the beginning.

N N

— . —

;P
[(N/3)1]°0! vt

A similar application of Stirling’s approximation gives,

Ay = ““{[(Niv;)!]w [(N/3£!130111} ~ —k{Nln(%') —N—Mn(gf) +N} = ann@

We may generalize the result by noting the pattern with this result and the previous result,

(AS)y = Rln[g} (ig) 4.6

where the subscript 7 indicates that this equation holds at constant 7. For an isothermal ideal gas,
we also may express this in terms of pressure by substituting ¥ = R7/P in Eqn. 4.6

(AS), = R 1n[§] (ig) 4.7

11



Example 4.1 Entropy change and “lost work” in a gas expansion

An isothermal ideal gas expansion produces maximum work if carried out reversibly and less
work if friction or other losses are present. One way of generating “other losses” is if the force of
the gas on the piston is not balanced with the opposing force during the expansion, as shown in
part (b) below. Consider a piston/cylinder containing one mole of nitrogen at 5 bars and 300 K is
expanded isothermally to 1 bar.

(a) Suppose that the expansion is reversible. How much work could be obtained and how much
heat is transferred? What is the entropy change of the gas?

(b) Suppose the isothermal expansion is carried out irreversibly by removing a piston stop and
expanding against the atmosphere at 1 bar. Suppose that heat transfer is provided to permit this to
occur isothermally. How much work is done by the gas and how much heat is transferred? What
is the entropy change of the gas? How much work is lost compared to a reversible isothermal pro-
cess and what percent of the reversible work is obtained (the efficiency)?

Solution:

Basis: 1 mole, closed unsteady-state system.

(a) The energy balance for the piston/cylinder is AU = Q + W~ = 0 because the gas is iso-
thermal and ideal. dW = —PdV = «(nRT/V)dV; W= -nRTIn(V,/V|) = —aRTIn(P,/P,) =
—(1)8.314(300)In(5) = —4014J. By the energy balance Q0 = 4014]J.

The entropy change is by Eqn. 4.7, AS = -nRIn(P,/P,) = <(1)8.314In(1/5) = 13.38 J/K.

(b) The energy balance does not depend on whether the work is reversible and is the same.
Taking the atmosphere as the system, the work 1S W yim = P o V2 .am V1 atm) =
_EEC -— alm(K]_ZZ) =P, alm(nRT/ P Z_nRT/P ]) = nRT (P alm/ P Z_P alm/P l) ==
Wee=nRT(P 4/ P1—P oy P2) = (1)8.314(300)(1/5-1) = 19951, O = 1995].
The entropy change depends on only the state change and this is the same as (a), 13.38 J/K.
The amount of lost work is W, = 4014 — 1995 = 2019], the percent of reversible work
obtained (efficiency) is 1995/4014 - 100% = 49.7%.

12



Entropy of Mixing for Ideal Gases

Mixing is another important process to which we may apply the statistics that we have developed.
Suppose that one mole of pure oxygen vapor and three moles of pure nitrogen vapor at the same
temperature and pressure are brought into intimate contact and held in this fashion until the nitro-
gen and oxygen have completely mixed. The resultant vapor is a uniform, random mixture of nitro-
gen and oxygen molecules. Let us determine the entropy change associated with this mixing
process, assuming ideal-gas behavior.

Since the 7' and P of both ideal gases are the same, V'y, = 3V, and V¥, = 4V,. Ideal gas
molecules are point masses, so the presence of O, in the N, does not affect anything as long as the
pressure is constant. The main effect is that the O, now has a larger volume to access and so does
N,. The component contributions of entropy change versus volume change can be simply added.
Entropy change for O,:

AI_S = nolen(4) = ner[—xoz]n(O.ZS)] = ntorR[—szln(sz)]
Entropy change for N,:
4
AS = nwrlen(g) = nmtR[—xNzln(OJS)] = ner[—xNzln(xNz)]

Entropy change for total fluid:

AS = —n, R[xpyIn(xy) + X3y In(xy,)] = —4R(-0.562) = 18.7 J/K

mix

ASis. = —Rinlnxi In general, ideal mixing. 4.8

The entropy of a mixed ideal gas or an ideal solution, here both denoted with a superscript “is

.Sis = Zn S;TAS, = Z"isi_RZ"ilnxi or §° = ZxS RZx Inx; 4.9

I i i 13




4.3 THE MACROSCOPIC VIEW OF ENTROPY

Molar or specific entropy is a state property which will assist us in the following ways.

1. Trreversible processes will result in an increase in entropy of the universe. (Irreversible pro-
cesses will result in entropy generation.) Irreversible processes result in loss of capability
for performing work.

2. Reversible processes result in no increase in entropy of the universe. (Reversible processes
result in zero entropy generation. This principle will be useful for calculation of maximum
work output or minimum work input for a process.)

3. Proposed processes which would result in a decrease of entropy of the universe are impos-
sible. (Impossible processes result in negative entropy generation.)

Defines “reversible” as AS =0

Defines “impossible” as self-organizing;
AS < 0 with no energy input

Allows Calculation of Effeciency

S=0 process has no waste energy (heat)
Actually process has waste energy

Ratio of Wwith waste/S=(0 work = effeciency

14



Entropy Definition (Macroscopic)

Let us define the differential change in entropy of a closed simple system by the following equation:

do
dS= —T:-’—"’—" 4.12
sys

For a change in states, both sides of Eqn. 4.12 may be integrated,

state 2

dQ
AS= —Iey 4.13
Tsys
state 1

where the following occurs:

1. The entropy change on the lefi-hand side of Eqn. 4.13 is dependent only on states 1 and 2
and not dependent on reversibility. However, to calculate the entropy change via the inte-
gral, the infegral may be evaluated along any convenient reversible pathway between the
actual states.

2. T, 1s the temperature of the system boundary where heat is transferred. Only if the system

boundary temperature is constant along the pathway may this term be taken out of the inte-
gral sign.

15



Example 4.3 Adiabatic, reversible expansion of steam

Steam is held at 450°C and 4.5 MPa in a piston/cylinder. The piston is adiabatically and revers-
ibly expanded to 2.0 MPa. What is the final temperature? How much reversible work can be
done?

Solution: The 7, P are known in the initial state, and the value of § can be found in the steam
tables. Steam is not an ideal gas, but by Eqn. 4.12, the process is isentropic because it is revers-
ible and adiabatic. From the steam tables, the entropy at the initial state is 6.877 kJ/kgK. At 2
MPa, this entropy will be found between 300°C and 350°C. Interpolating,

6.877 — 6.7684
— — — = — . — = o
T = 300 6.0583 676 (350 -300) = 300+ 0.572(350 -300) = 329°C

The P and 8 = §' are known in the final state and these two state properties can be used to find
all the other final state properties. The work is determined by the energy balance:

AU = Q+ Wg. The initial value of U is 3005.8 kJ/kg. For the final state, interpolating U by
using 8 at P, U = 2773.2 +0.572(2860.5 — 2773.2) = 2823.1 kJ/kg, so

Wge = (2823.1 -3005.8) = —182.7 kl’kg

16
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Enthalpy h in kd/kg
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Let us revisit the Carnot cycle of Section 3.1 in light of this new state property, entropy. The
Carnot cycle was developed with an ideal gas, but it 1s possible to prove that the cycle depends only
on the combination of two 1sothermal steps and two adiabatic steps, not the ideal gas as the working
fluid."* Because the process 1s cyclic, the final state and initial state are identical, so the overall
entropy changes of the four steps must sum to zero, AS = 0. Because the reversible, adiabatic steps
are isentropic, AS = 0, the entropy change for the two isothermal steps must sum to zero. As we dis-
cussed above, for an isothermal step Eqn. 4.13 becomes AS = Q,,./T. Therefore, an analysis of the
Carnot cycle from the viewpoint of entropy is

~T
(AS =0= QH+ Oc = Oc = —£ Camot cycle 4.14

Ty T Qn Ty

This can be inserted into the formula for Carnot efficiency, Eqn. 3.6. Note that this relation is not
constrained to an ideal gas! In fact, there are only three constraints for this balance: The process is
cyclic; all heat is absorbed at Ty, all heat is rejected at 7. Example 4.4 shows how the Carnot
cycle can be performed with steam including phase transformations.

Table 3.1 Mustration of Carnot Cyele Caleulations for an Ideal Gas.*

Step  Type 2 ). 4 ‘ 3.6

V, Vi
a-—>b |Isotherm Q_H = nRTHlnF” =0 (ig) _QH = —nRT, Ian <0 (ig)
a a

b->c |Adiabat 0 AU = nCy(Te— Ty =0 (*ig)

Vi , v, .
¢—>d |Isotherm Q( = nRTCln?c <0 (ig) —QC = -nR T(.']";'»f =0 (ig)

d—a |Adiabat 0 AU = nCTy— T) = 0 (*ig)

a. The Camot cycle calculations are shown here for an ideal gas. There are no requirements that the working
fluid is an ideal gas, but it simplifics the calculations.

Note: The temperatures Ty and T here refer to the hot and cold temperatures of Isotherm c
the gas, which ave not required to be equal to the temperatures of the reservoirs
for the Carnot engine to be reversible. In Chapter 4 we will show that if these 21
temperatures do equal the reservoir temperatures, the work is maximized. V




Rules for Carnot Cycle

Isothermal
(vary P) Q= -Wec =-nRTIn(V2/ )

Isothermal
Isobaric O=AU- Wec =AU+ PAV=AH
Wec = -PAV
Adiabatic

Reversible Q=0 AS =0
Wec=AU=R Cv (T2 — Th)

For Turbine
The work done by the gas 1s work done by the turbine
(blades moved around by the gas) plus the work done

by pressures (flow work).

Uz — Ur = -Wenatt + P1V1 — P2V2  (adiabatic turbine)
~Wshatt = Ho — Hi

Difference between shaft work and expansion/contraction work



Example 4.4 A Carnot cycle based on steam

Fig. 4.3 shows the path of a Camot cycle operating on steam in a continuous cycle that parallel
the two isothermal steps and two adiabatic steps of Section 3.1. First, saturated liquid at 5 MPa
is boiled isothermally to saturated vapor in step (a->b). In step (b->c), steam is adiabatically and
reversibly expanded from saturated vapor at 5 MPa to | MPa. In (c—d), heat is isothermally
removed and the volume drops during condensation. Finally, in step (d-—»a), the steam is adiabat-
ically and reversibly compressed to 5 MPa and saturated liquid. (Hint: Challenge yourself to
solve the cycle without looking at the solution.).

(a) Compute W(a—»b) and Q-

(b) Compute W{b->c).

(c) Compute W(d-»a). (The last step in the cycle).

(d) Compute #{c->d) and Q (The third step in the cycle).

(e) For the cycle, compute the thermal efficiency by »,=-W,/Qp and compare to Camot’s effi-
ciency, 17y = (T — T Ty

a“b

Liquid

s Vapor

Two-phase Region

S
Figore 4.3 A T-S diagram illusiraiing a Carnol eycle based on steam.

Solution: The entropy change is zero for the expansion and compression steps because these
steps are adiabatic and reversible, as indicated by the vertical line segments in Fig. 4.3.

(a) E-balance: fixed P.T vaporization, QO = AU — Wg- = (AU + PAV) = A" = 1639.57 J/kg;
Weda—>b) = PAV =5(0.0394 - 0.001186)* 1000 = 191.1 J’kg.

(b) E-balance: isentropic, Wgdbh-—c) = AU; Uy = Ulsat. vap., SMPa) = 2596.98 klJ’kg;
S-balance: AS=0; §, = §, = 5.9737 kl’kg-K= g (6.5850) + (1 — g,.)2.1381; g. = 0.8625;
U.=0.8625(2582.75) + (1 — 0.8625)761.39 = 2332.31 kl/kg;

Wedb—>c)=2332.31 — 2596.98 = -264.67 kJ'’kg.

(c) This is the last step. E-balance: isentropic. Wgdd—a) = AU; U; = Ulsat. lig., SMPa) =
1148.21 kJ/’kg; the quality at state 4 is not known, but we can use the entropy at state a to find it.
S-balance: AS=0; ;= 5, =2.9210 kl’kg-K= g{6.5850) + (1 — g4)2.1381; g;=0.1761;
U;=0.1761(2582.75) + (1 - 0.1761)761.39 = 1082.13 kl/kg;

Wegdd—>a)=1082.13 — 1148.21 =—66.08 kl'’kg.

23



Example 4.4 A Carnot cycle based on steam (Continued)

(d) This is the third step using the quality for d calculated in part (c). This is a fixed 7,P conden-
sation. E-balance: Q= AU — Wgeo = (AU+PAV) = AH; H;= 762.52 + 0.1761(2014.59) =
1117.29 kJ'kg; H=762.52 + (.8625(2014.59) = 2500.10 kT/kg; Q= H;— H,=—1382.21 kl’kg
Wge=PAV:; V. =0.001127(1 — 0.8625) + 0.8625(0.1944) = 0.1678 m*/kg = 167.8 cm?/g
V;=0.001127(1 — 0.1761)+0.1761(0.1944) = 0.0352 m*/kg = 35.2 cm™/g

Wc—d) = 1.0(35.2 — 167.8) = -132.6 MPa-cm®/g = —132.6 kJ/kg

(€) 1y =Wt Qr; Wiyey = (264.67-66.08+191.1-132.6) = 257.1 kl/’kg;

ny=257.1/1639.57 = 0.157; 5, (Camot) = (263.94-179.88)/(263.94+273.15) = 0.157.

The actual cycle matches the Carmot formula. Note that the cyclic nature of this process means
that we could have computed more quickly by

Woer=—0c+ Q)= 1382.21 — 1639.57 =257 4 kl/kg.

24



Calculation of Entropy Changes in Closed Systems

For a closed reversible system without shaft work.
2
d U+# - dQ,.m,%+ AW g 4.15
8¢

[dU+ PdV] = dO 4.16

reyv

Constant Pressure (Isobaric) Pathway

Many process calculations involve state changes at constant pressure. Recognizing H = U + PV,
dH = dU + PdV + VdP. In the case at hand, dP happens to be zero; therefore, Eqn. 4.16 becomes

dH = dQ,,, 4.17

Since dH = CpdT at constant pressure, along a constant-pressure pathway, substituting for
dQ,,, in Eqn. 4.13, the entropy change is

Cp
(dS)p = —i:(dT)P 4.18
Ty
CP
AS = I?dT 4.19 OConstant
B pressure.
1

25



0 Isothermal.

Constant Volume Pathway

For a constant volume pathway, Eqn. 4.16 becomes

dU = dQ

reyv

4.20

Since dU = C,,dT along a constant volume pathway, substituting for dQ,,, in Eqn. 4.13, the entropy

change is

T2
C
AS = I—’-’dT
T
Tl

Constant Temperature (Isothermal) Pathway

4.21 0 Constant

volume.

The behavior of entropy at constant temperature is more difficult to generalize in the absence of
charts and tables because dQ,,, depends on the state of aggregation. For the ideal gas, dU=0 =
dQ — PdV, dQ = RTdV/V, and plugging into Eqn. 4.13,

AS'E = Rln[zﬂ
0
v, or

AS'® = -R ln[

2

P

3

(ig) 4.22

For a liquid or solid, the effect of isothermal pressure of volume change is small as a first approxima-
tion; the precise relations for detailed calculations will be developed in Chapters 6-8. Looking at the
steam tables at constant temperature, entropy is very weakly dependent on pressure for liguid
water. This result may be generalized to other liquids below 7, = 0.75 and also to solids. For con-
densed phases, to a first approximation, entropy can be assumed to be independent of pressure (or

volume) at fixed temperature.
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0 Adiabatic and
reversible.

Adiabatic Pathway

A process that is adiabatic and reversible will result in an isentropic path. By Eqn. 4.13,

state 2 erev

T = 0| for reversible process only.
state | sys

AS:

Note that a path that is adiabatic, but not reversible, will not be isentropic. This is because a revers-

4.23

ible adiabatic process starting at the same state 1 will not follow the same path, so it will not end at

state 2, and reversible heat transfer will be necessary to reach state 2.

Phase Transitions

In the absence of property charts or tables, entropy changes due to phase transitions can be easily
calculated. Since equilibrium phase transitions for pure substances occur at constant temperature
and pressure, for vaporization

AS" P =I erev _ 1 j‘ do _ Szvap
T Tvat rev Teat

where 7% is the equilibrium saturation temperature. Likewise for a solid-liquid transition,

ASfus _ i’ﬁ

T

m

where T, is the equilibrium melting temperature. Since either transition occurs at constant pressure
if along a reversible pathway, we may include Eqn. 4.17, giving

vap AHvap us AHfus
AST = and| A5 = T 4.24

sat
T m
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Example 4.5 Ideal gas entropy changes in an adiabatic, reversible

expansion

In Example 2.11 on page 75, we derived the temperature change for a closed-system adiabatic
expansion of an ideal gas. How does the entropy change along this pathway, and what does this
example show about changes in entropy with respect to temperature?

Solution: Reexamine the equation (C/T)dT = —(R/V)dV, which may also be written
(Cy/R)dInT = —dIn¥V. We can sketch this path as shown by the diagonal line in Fig. 4.4.
Since our path is adiabatic (dQ = 0) and reversible, and our definition of entropy is
dS = (dQ,,,)/T, we expect that this implies that the path is also isentropic (a constant-
entropy path). Since entropy is a state property, we can verify this by calculating entropy along
the other pathway of the figure consisting of a constant temperature (step A) and a constant vol-

ume (step B)

For the reversible isothermal step we have

dU=dQ,,,—~PdV=0 or dQ,,=PdV (ig)

In7 | Adiabatic;
Reversible
Path

InV

Figure 4.4 FEquivalence of an adiabatic and an
alternate path on a T-V diagram.

Thus,
_ 40, _ PdV .
(dS)y 7 T (ig)
Substituting the ideal gas law,
; RTdV dv .
4 = emmmms = —_— .
(dS'€)p T R % (ig) 4.25
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Example 4.5 Ideal gas entropy changes in an adiabatic, reversible

expansion (Continued)

For the constant volume step, we have

dU=dQ,., or CdT=d0,,,

Thus,
dQ dT
(dS)y = Tfe" = CV-?: 4.26

We could replace a differential step along the adiabat (adiabatic pathway) with the equivalent
O e entropy differential steps along the alternate pathways; therefore, we can see that the change in entropy
change along the is zero
adiabatic, revers- ’
ible path is the c
same as along (step T4 . v R .
A+ stop B) lustrat dSyiapas = (dS)y+ (dSE)p = —dT+7dV = 0 (ig) 4.27

ing that S is a slate

property. which was shown by the energy balance in Eqn. 2.62, and we verify that the overall expansion is

isentropic. Trials with additional pathways would show that AS is the same.

The method of subdividing state changes into individual temperature and volume changes can
be generalized to any process, not just the adiabatic process of the previous example, giving

; C
2 —’-, -{-I_2 V 1
as' = Xt + 2 (ig) 4.28

We may integrate steps A and B independently. We also could use temperature and pressure steps to
calculate entropy changes, resulting in an alternate formula:

T v T P




0 Temperature
derivatives of en-
tropy are related to
Cpand Cy.

(.6._ _ S
ér'y T

which provides a relationship between Cy- and entropy. Similarly, looking back at Eqn. 4.18,

(Qé‘) = =P
T p
Example 4.6 Ideal gas entropy change: Integrating Cp (T

Propane gas undergoes a change of state from an initial condition of 5 bar and 105°C to 25 bar
and 190°C. Compute the change in enthalpy using the ideal gas law.

Solution: Because P and T are specified in each state, the ideal gas change is calculated most eas-
ily by combining an isobaric temperature step, Eqns. 4.19, and an isothermal pressure change,
Eqn. 4.22. The heat capacity constants are obtained from Appendix E.

2C'
Srg _ng _I —dT Rln _ I PdT J' (A+BT+ CT +DT3)d7
Tl T T

T, P,
SiE S = Aln(T)+B(T2 T1)+—(T2 T )+-(T2 T3)- Rln-P-

1 1

463.15 ~1.586x10 "

_ 2
=—4.224In 2= +0.3063(463.15 ~378.15) + 5 (463.15
3215x10°° 25
-378.15%) + = (463.15° - 378.15%) - 8. 314In7 =6.613 Jimol-K

4.30
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Example 4.7 Entropy generation and “lost work”

In Example 4.1 consider the surroundings at 300 K: (a) Consider the entropy change in the sur-
roundings and the universe for parts 4.1(a) and 4.1(b) and comment on the connection between
entropy generation and lost work; (b) How would entropy generation be affected if the surround-
ings are at 310 K?

Solution:

(a) For 4.1(a) the entropy change of the surroundings is

d —
AS . = Ti . 3%0 - ;&4 = —13.38J/K . This is equal and opposite to the entropy

change of the piston/cylinder, so the overall entropy change is AS . . = 0.
For part 4.1(b), the entropy change of the universe is
AS .. = Q7300 = —1995/300 = —6.65J/K . The total entropy change is

ASyniverse = 13.38-6.65 = 6.73J/K > 0, thus entropy is generated when work is lost.

(b) If the temperature of the surroundings is raised to 310K, then for the reversible piston cylin-
der expansion for 4.1(a), AS_ .. = —4014/310 = -12.948J/K , and

ASuniveme
to the temperature difference at the boundary even though the piston/cylinder and work was fric-
tionless without other losses. We will reexamine heat transfer in a gradient in a later example.
For case 4.1(b), the entropy generation is still greater, indicating more lost work,

AS_ .. = —1995/310 = -6.43J/K, AS = 13.38-6.43 = 6.95J/K>0.

= 13.38-12.95 = 0.43J/K > 0. This process now will have some ‘lost work’ due

universe
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Example 4.1 Entropy change and “lost work” in a gas expansion

An isothermal ideal gas expansion produces maximum work if carried out reversibly and less
work if friction or other losses are present. One way of generating “other losses” is if the force of
the gas on the piston is not balanced with the opposing force during the expansion, as shown in
part (b) below. Consider a piston/cylinder containing one mole of nitrogen at 5 bars and 300 K is
expanded isothermally to 1 bar.

(a) Suppose that the expansion is reversible. How much work could be obtained and how much
heat is transferred? What is the entropy change of the gas?

(b) Suppose the isothermal expansion is carried out irreversibly by removing a piston stop and
expanding against the atmosphere at 1 bar. Suppose that heat transfer is provided to permit this to
occur isothermally. How much work is done by the gas and how much heat is transferred? What
is the entropy change of the gas? How much work is lost compared to a reversible isothermal pro-
cess and what percent of the reversible work is obtained (the efficiency)?

Solution:

Basis: 1 mole, closed unsteady-state system.

(a) The energy balance for the piston/cylinder is AU = Q + W~ = 0 because the gas is iso-
thermal and ideal. dW = —PdV = «(nRT/V)dV; W= -nRTIn(V,/V|) = —aRTIn(P,/P,) =
—(1)8.314(300)In(5) = —4014J. By the energy balance Q0 = 4014]J.

The entropy change is by Eqn. 4.7, AS = -nRIn(P,/P,) = <(1)8.314In(1/5) = 13.38 J/K.

(b) The energy balance does not depend on whether the work is reversible and is the same.
Taking the atmosphere as the system, the work 1S W yim = P o V2 .am V1 atm) =
_EEC -— alm(K]_ZZ) =P, alm(nRT/ P Z_nRT/P ]) = nRT (P alm/ P Z_P alm/P l) ==
Wee=nRT(P 4/ P1—P oy P2) = (1)8.314(300)(1/5-1) = 19951, O = 1995].
The entropy change depends on only the state change and this is the same as (a), 13.38 J/K.
The amount of lost work is W, = 4014 — 1995 = 2019], the percent of reversible work
obtained (efficiency) is 1995/4014 - 100% = 49.7%.
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Example 4.8 Entropy generation in a temperature gradient

A 500 mL glass of chilled water at 283 K is removed from a refrigerator. It slowly equilibrates to
room temperature at 298 K. The process occurs at 1 bar. Calculate the entropy change of the
water, AS,,... the entropy change of the surroundings, AS, ., and the entropy change of the uni-
verse, AS, ... Neglect the heat capacity of the container. For liquid water Cp= 4.184 J/g-K.

Solution:

Water: The system is closed at constant pressure with 7° = 283 K and T/'= 298 K. We choose
any reversible pathway along which to evaluate Eqn. 4.13, a convenient path being constant-
pressure heating. Thus,

dQ,, = dH = mCpdT

298 J
= mCpln| —| = 500(4.184 M(—— = 108.0% *
mCp m (4.184)1n( 28 NG

mCpdT
A‘—S'walef = J' T
sys
r
Surroundings: The surroundings also undergo a constant pressure process as a closed system;
however, the heat transfer from the glass causes no change in temperature—the surroundings act
as a reservoir and the temperature is 298 K throughout the process. The heat transfer of the sur-

roundings is the negative of the heat transfer of the water, so we have

'l 7
. 99, 199,y waer . MCpAT e 313807 10532 *
Sare = | 77— T T T TR S
s surr ; surr surr
r r

Note that the temperature of the surroundings was constant, which simplified the integration.

Universe: For the universe we sum the entropy changes of the two subsystems that we have
defined. Summing the entropy change for the water and the surroundings we have

AS . =272

“umy K

Entropy has been generated. The process is irreversible.
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4.4 THE ENTROPY BALANCE

%"—?: Zsin.i Z gout out | Z _f(__?_ Sgen 43
inlets oullets surfaces Y%
o 0 .
0Ol:)el'\. steady- 0= m(Sm _Saul) + -'7;,+ Sgen
slate entropy
balance.
dQ
0Closed system ds = "7? = d'Sgen
entropy balance.

Note: As we work examples for irreversible processes, note that we do not apply the entropy bal-
ance to find entropy changes. We always calculate entropy changes by alternative reversible
pathways that reach the same states, then we apply the entropy balance to find how much
entropy was generated.

Alternatively, for reversible processes, we do apply the entropy balance because we set the
entropy generation term to zero.
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Example 4.9 Entropy balances for steady-state composite systems

Imagine heat transfer occurting between two reservoirs.

(a) A steady-state temperature profile for such a system is illustrated in Fig. (a) below. (Note that
the process is an unsteady state with respect to the reservoirs, but the focus of the analysis here is
on the wall.) The entire temperature gradient occurs within the wall. In this ideal case, there is no
temperature gradient within either reservoir (therefore, the reservoirs are not a source of entropy
generation). Note that the wall is at steady state. Derive the relevant energy and entropy balances,
carefully analyzing three subsystems: the hot reservoir, the cold reservoir, and the wall. Note
that a superficial view of the reservoirs and wall is shown in Fig. (b).

(b) Suppose the wall was replaced by a reversible Camot engine across the same reservoirs, as
illustrated in Fig. (c). Combine the energy and entropy balances to obtain the thermal efficiency.

Hot Reservoir Hot Reservoir
Temperature Profile Ty Ty
Wall 7 T
=300 K
T=500K ¢ 30 O O
A0y
Hot Wy
Reservoir Wall
Cold A —
Reservoir
Oc | c
0 b N, S— _‘_
x Cold Reservoir Cold Reservoir
Te Tc
(a) (5) (c)
Note: Keeping track of signs and variables can be confusing when the uni-
verse is divided into multiple subsystems. Heat flow on the hot side of the wall
will be negative for the hot reservoir, but positive for the wall. Since the focus
of the problem is on the wall or the engine, we will write all symbols from the
perspective of the wall or engine and relate to the reservoirs using negative
signs and subscripts.
Solution:

(a) Since the wall is at steady state, the energy balance for the wall shows that the heat flows in
and out are equal and opposite:

0= Z Q=04 0c=0y=0¢ 4.35
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Example 4.9 Entropy balances for steady-state composite systems
(Continued)

The entropy balance in each reservoir simplifies:

e g g

out

The entropy generation term drops out because there is no temperature gradient in the reservoirs.
Taking the hot reservoir as the subsystem and noting that we have defined Qp and Q- to be
based on the wall, we write:

d_s_ = ;_ - _QHWB". ; - _.(__2_ - _Q(.‘Iwall - QHiwnl] 436
dt Ty TH dt T T. T ’

where the heat fluxes are equated by the energy balance.

Now consider the entropy balance for the wall subsystem. Entropy is a state property, and since
no state properties throughout the wall are changing with time, entropy of the wall is constant,
and the left-hand side of the entropy balance is equal to zero. Note that the entropy generation
term is kept because we know there is a temperature gradient:

Syl

—vall _ g =

dt

QHQ

C
T +S8’IW
H C

Noting the relation between the heat flows in Eqn. 4.35, we may then write for the wall:
Sgen wall = Q [—l - 'l- 437
=& ? H TC T

Then the wall with the temperature gradient is a source of entropy generation. Summarizing,

ASuniv _ @Sy, dSan  4S¢ _ ~Qpwal , Qcwall _ — 438

dt  dt dr dt T, Te.

Hence we see that the wall is the source of entropy generation of the universe, which is positive.
Notice that inclusion of the wall is important in accounting for the entropy generation by the
entropy balance equations.

(b) The overall energy balance relative for the engine is:

0= Z Q+W = Qy+Qc+Ws=n, = ES [1+gfj 439

boundarics H




Example 4.9 Entropy balances for steady-state composite systems

(Continued)

The the engine operates a steady-state cycle, dScng]m/ dt = 0 (it is internally reversible):

n.i out . ou _Q, - __Q_H % .Q_C_—TC
o-zs’y’zs /' Z‘aﬁm?+%_ TH+TC=>QH-T—H 4.40

out

As before, 77, = ~Wg/ QH = (1 - T,/Ty) and we have derived it using the entropy balance.
Note that the heat flows are no longer equal and are such that the entropy changes of the reser-
voIrs sum to zero.

Te 11
Snet Qﬂ(l_ ) = TC'QH(TZ‘_F:) 441

Wiost = TC._S'ge,, 4.42

T¢ can be called the temperatfnre at which the work is lost. -
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0 Camot thermal
efficiency.

0 Camot coeffi-
cient of parfor-
manca.

An entirely analogous analysis of heat transfer would apply if we ran the heat engine in
reverse, as a heat pump. Only the signs would change on the direction the heat and work were flow-
ing relative to the heat pump. Therefore, the use of entropy permits us to reiterate the Carmot formu-
las in the context of all fluids, not just ideal gases.

. .. T,.
,,9=£_S"_“=[1+Q,:_) =( _T—f),Camothcatengine 4.43
Ou Q
Oc (T T
COP=—=— = (T—— l) - 7.7 | Camotrefrigerator 4.44
WS, net C H "¢
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4.5 INTERNAL REVERSIBILITY

A process may be mrreversible due to interactions at the boundanes (such as discussed in Example 4.9
on page 155) even when each system in the process is reversible. Such a process is called inter-
nally reversible. Such a system has no entropy generation inside the system boundaries. We have

Tuw T%_\
b_’ WTS'.nel '\ /N_ WS'"“

TC.‘— T CT
A 4 !
T 1 T, 1
(a) Heal engine (B) Heat pump

Figure 4.5 Schematic of a heat engine (a) and heat pump (b). The lemperatures of the reservoirs are not
required to malch the reversible engine temperatures, but work is optimized if they do, as discussed
in the text.

Heat Engine

A schematic for a Camot engine is shown in Fig 4.5(a). Heat is being transferred from the reservoir
at T, to the reservoir at 7y, and work is being obtained as a result. In order for heat transfer to occur
between the reservoirs and the heat engine in the desired direction, we must satisfy
T2 Ty >Te2z Ty, and since the thermal efficiency is given by Eqn. 3.6, for maximum efficiency
(maximum work), T-should be as low as possible and Ty as high as possible, i.e., set Tg=T,, T =
T).

Heat Pump

A schematic for a Carnot heat pump is shown in Fig. 4.5(b). Heat is being transferred from a reser-
voir at T to the reservoir at T,, and work is being supplied to achieve the transfer. In order for heat
transfer to occur between the reservoirs and the heat engine in the desired direction, we must satisfy
T, 2Ty >Te =T, . Since the COP is given by Eqn. 4.44, for maximum COP (minimum work), T
should be as high as possible and T as low as possible, i.e., set To = Ty, Ty = T, Therefore, opti-
mum work interactions occur when the Carnot device operating temperatures match the surround-
ing temperatures. We use this feature in future calculations without special notice.
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4.6 ENTROPY BALANCES FOR PROCESS EQUIPMENT
Simple Closed Systems

Example 4.10 Entropy generation by quenching

A carbon-steel engine casting [Cp = (.5 kI'kg®C] weighing 100 kg and having a temperature of
700 K is heat-treated to control hardness by quenching in 300 kg of oil [Cp= 2.5 kJ’kg°C] mitially
at 298 K. If there are no heat losses from the system, what is the change in entropy of: (a) the
casting; (b) the oil; (c) both considered together; and (d) is this process reversible?

Solution: Unlike the previous examples, there are no reservoirs, and the casting and o1l will
both change temperature. The final temperature of the oil and the steel casting is found by an
energy balance. Let T be the final temperature in K.

Energy balance: The total change in energy of the oil and steel is zero.

Heat lost by casting:

Q =mCpAT =100 (0.5) (700 - T¥)

Heat gained by oil:

Q =mCpAT =300 (2.5) (P —298) = balancing the heat flow, 7' =323.1 K

Entropy balance: The entropy change of the universe will be the sum of the entropy changes of
the o1l and casting. We will not use the entropy balance directly except to note that AS,,,;, = Syep.
We can calculate the change of entropy of the casting and oil by any reversible pathway which
begins and ends at the same states. Consider an isobaric path:

. e dQ Cp T,
Using the macroscopic definition = AS = Jf = mj? dT= mCp ln(T—J (*)
1
(a) Change in entropy of the casting:
AS =100 (0.5) In[323.1/700] =-38.7 kJ/K (*)

(b) Change in entropy of the oil (the oil bath is of finite size and will change temperature as heat
1s transferred to it):

AS =300 (2.5) In[323.1/298] = 60.65 kI/K (*)

(c) Total entropy change: S, = A S,,,, = 60.65 —38.7=21.9kI/K
(d) S, = 0; therefore irreversible; compare the principles with Example 4.8 on page 152 to note
the similarities. The difference is that both subsystems changed temperature.




Heat Exchangers

The entropy balance for a standard two-stream heat exchanger 1s given by Eqn. 4.45. Since the unit
1s at steady state, the left-hand side is zero. Applying the entropy balance around the entire heat
exchanger, there is no heat transfer across the system boundaries (in the absence of heat loss), so
the heat-transfer term 1s elimimated. Since heat exchangers operate by conducting heat across tub-
ing walls with finite temperature driving forces, we would expect the devices to be nrreversible.
Indeed, if the inlet and outlet states are known, the flow terms may be evaluated, thus permitting
calculation of entropy generation.

d ® i ® i : -
/dlg;,= Zsznnlm B Zsout”xmﬂ 72+ Sgen 4.45
i

8
out g4

We also may perform “paper” design of ideal heat transfer devices that operate reversibly. If
we set the entropy generation term equal to zero, we find that the inlet and outlet states are con-
strained. Since there are multiple streams, the temperature changes of the streams are coupled to
satisfy the entropy balance. In order to construct such a reversible heat transfer device, the unit
would need to be impracticably large to only have small temperature gradients.
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Example 4.11 Entropy in a heat exchanger

A heat exchanger for cooling a hot hydrocarbon liquid uses 10 kg/min of cooling H,0O which
enters the exchanger at 25°C. Five kg/min of hot oil enters at 300°C and leaves at 150°C and has
an average specific heat of 2.51 kl’kg-K.

(a)Demonstrate that the process is imeversible as it operates now.
(b)Assuming no heat losses from the unit, calculate the maximum work which could be obtained

if we replaced the heat exchanger with a Camot device which eliminates the water stream and
transfers heat to the surroundings at 25°C

13008 il 150°C
St -——=—===——====—- —
«— [ | __ _ _________1"] e«
Water, T, (°C) Water 25°C
Solution:

(a) System is heat exchanger (open system in steady-state flow)
Energy balance:

+AH =

oil water water

AH l'"

10(4.184)(T, ™ - 25) + 5(2.51)(150 - 300) = 0; T,” = 70°C

Entropy balance:
ASitgit+ ASyarepyarer = Sgen
dS,=dQ/T= CpdT/T = AS,= Cp In (T, */T") (*)
AS,;= Cpn (T°“/T) = (2.51)In(423.15/573.15) = —0.7616 kI/kgK (*)
AS, ger = CpIn (T™/T™ = (4.184) In(343.15/298.15) = 0.5881 kIkgK *)

Sgen = AS, gy +AS, = 5(-0.7616) + 10(0.5881) = 2.073 kI/K-min

The process is irreversible because entropy is generated.

(b)The modified process is represented by the “device” shown below. Note that we avoid calling
the device a “heat exchanger” to avoid confusion with the conventional heat exchanger. To sim-
plify analysis, the overall system boundary is used.

onzeec | ] ' 0il150°C
e :] -

| ;

{ Oy

: Camot /~ R ;irS’" o

| Engine \__/ o

\ Qc /'

25oC Overall System Boundary

By an energy balance around the overall system, 0 = a(H" —H"")+ Q.+ Is.
We can only solve for the enthalpy term,

(H"~ ") = WC(T" - T"") = 5(2.51)(300150) = 13825 kl/min

Since heat and work are both unknown, we need another equation. Consider the entropy bal-
ance, which, since it is a reversible process, Sges = 0, gives

= (s - s"“’) #2500 0p=298.15 (-0.7616):5 =-1135 Kl/min

Now inserting these results into the overall energy balance gives the work,

W =-1883. + 1135. =748 kJimin
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Throttle Valves

Steady-state throttle valves are typically assumed to be adiabatic, but a finite pressure drop with
zero recovery of work or kinetic energy indicates that Sge,, > 0. Throttles are isenthalpic, and for
an ideal gas, they are thus isothermal, ASE = C M Rln(P"“'/Pm) For a real fluid,
temperature changes can be significant. The entropy increase is large for gases, and small, but non-
zero for hquids. It 1s important to recall that liquid streams near saturation may flash as they pass
through throttle valves, which also produces large entropy changes and significant cooling of the
process fluid even when the process is isenthalpic. Throttles involving flash are common in the lig-
uefaction and refrigeration processes discussed in the next chapter. Throttles are always rrevers-
ible.

Nozzles

Steady-state nozzles can be designed to operate nearly reversibly; therefore, we may assume
Sgen = 0, and Eqn. 4.47 applies. Under these conditions, thrust is maximized as enthalpy is con-
verted into kinetic energy. The distinction between a nozzle and a throttle 1s based on the reversibil-
ity of the expansion. Recall from Chapter 2 that a nozzle is specially designed with a special taper to
avoid turbulence and irreversibilities. Naturally, any real nozzle will approximate a reversible one
and a poorly designed nozzle may operate more like a throttle. Proper design of nozzles 1s a matter
of fluid mechanics. We can illustrate the basic thermodynamic concepts of a properly designed noz-
zle with an example.
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Example 4.12 Isentropic expansion in a nozzle

Steam at 1000°C and 1.1 bars passes through a horizontal adiabatic converging nozzle, dropping
to 1 bar. Estimate the temperature, velocity, and kinetic energy of the steam at the outlet assuming
the nozzle is reversible and the steam can be modeled with the ideal gas law under the conditions.
Consider the initial velocity to be negligible. The highest exit velocity possible in a converging
nozzle is the speed of sound. Use the NIST web site® as a resource for the speed of sound in steam
at the exit conditions.

Solution:

Energy balance: AH = —mAV2 Entropy balance (reversible): AS=0.

For an isentropic reversible expansion the temperature will drop. We will approximate the heat
capacity with an average value. Let us imitially use a Cp for 650 K. Estimating the heat capacity
from Appendix E at 650 K, the polynomial gives Cp = 44.6 J/mol, R/Cp~ 8.314/44.6 = 0.186.
The following relation satisfies the entropy balance for an adiabatic, reversible, ideal gas (Eqn.
4.29):

R/C,
Pj

T
[?ZJ N p) = (L1 "% = 09824 =7, = 1273(0.9824) = 12505 K (%)
1

The temperature change is small, so the constant heat capacity assumption is fine. The enthalpy
change 1s —AH = —CpAT =44.6(1273 — 1250.5)(J/mol) = 1004 J/mol.

Assuming that the mlct velocity is low, v; ~ 0 and converting the enthalpy chan g,c to the change
n \fclocn'y glves vi=—280Hm=2 1004J/mol(mol/18.01 g)(lOOOg:’kg)(lkg-m Is5)I =

111,500 m?/s°, or v = 334 m/s. According to the NIST web site at 1250K and 0.1MPa, the speed
of sound is 843 m/s. The design is reasonable.

- mss == = & 4 - o an -— . P - - - PR o aad b4 e P - oadde
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Adiabatic Turbine, Compressor, and Pump

The entropy balance for a steady-state adiabatic device 1s:

/Z' zs‘ 9""’ out /?(Z Seen 4.46

our

The left-hand side drops out because the system 1s at steady state. If the device is reversible, Sg -
is zero. Further, these devices typically have a single inlet or outlet,'” and m"" = " | thus,

s = s 447

Therefore, if we know the inlet state, we can find S, The outlet pressure is generally given, so
for a pure fluid, the outlet state is completely specified by the two state variables $* and P, We

4.7 TURBINE, COMPRESSOR, AND PUMP EFFICIENCY

y o _ W
& Primes are pump or compressor efficiency =| 7. = e 100%
used to denote re- -
versible processes.
X . . W 0
turbine or expander efficiency =| 7, = W x 100% 4.49

O rdisbatic
reversible turbine,

compressor, and
pump.
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Summary of Process and General Rules

Nozzle AS=0
AH=A(1/2 m?)

Throttle AS'=-RIn(P>/P1) (1.g.)
AH=1/2 m?
Generally AH=0

Pump AS=0 for adiabatic reversible
AH=Ws= AH| 1jefi

Turbine AS=0 for adiabatic reversible
AH=Ws= AH 1jetr

Carnot (Use °K)
Engine ettt = (T - Tc)/Tn
Refrigerator COP = Tc/(Tu- 1c)
Heat Pump COP = Tu/(Tu - 1c)

Isothermal  (AS)r=R In[12/11] 1i.g.
=-R In[P2/P1]

(AH)=0
Ideal Mixing  ASmix =-R 2xi Inxi

Adiabatic, Reversible
AS=0

Isobaric (dS)r =G (dD)P/T
(dS/dDr = G/T
Constant Volume

(dS)yr=Cv (dD)v/T
(dS/dTv = CvIT

Phase Change AStrans = AHtrans/ Tirans



4.8 VISUALIZING ENERGY AND ENTROPY CHANGES

_ . _ const. H

const. P

~

N\ N
- Two-Phase Region

S

Figure 4.6 Hlustration of a T-S diagram showing lines of constant pressure and enthalpy.

Turbines, compressors, and pumps occur so frequently that we need convenient tools to aid in pro-
cess calculations. Visualization of the state change is possible by plotting entropy on charts. This
technique also permits the charts to be used directly in the process calculations. One common rep-
resentation is the 7-§ chart shown in Fig. 4.6. The phase envelope appears as a fairly symmetrical
hump. A reversible turbine, compressor, or pump creates state changes along a vertical line on
these coordinates. Lines of constant enthalpy and pressure are also shown on these diagrams, as
sketched in the figure. Volumes are also usually plotted, but they lie so close to the pressure lines
that they are not illustrated in the figure here to ensure clanty.

0\naualizing state
changes on charts
will ba halpful when
using tables or com-
puters for physical
properties.
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P-H diagrams shown in Fig. 4.7 are also useful; they are used frequently for refrigeration pro-
cesses. The phase envelope tends to lean to the right because the enthalpies of vapor and liquid are
both increasing along the saturation curve until the critical point is approached, where the vapor-
phase enthalpy decreases due to significant non-idealities. Lines of constant entropy on these plots
are slightly diagonal with a positive slope as shown in Fig. 4.7(a). For some hydrocarbons and
halogenated compounds, the phase envelope can lean more sharply than the isentropic lines as
shown in Fig. 4.7(b). A reversible compressor will operate along a line of constant entropy.

- ——- const. §

Figure 4.7 Hiustration of a P-H diagram showing (a) lines of constant entropy for a
species where the saturation curve leans less than isentropes (e.g.,
waler) and (b) illustration of a P-H diagram showing lines of constant
entropy for a species where the saturation curve leans more than isentropes

(e.g., hexane).

0 A 3D diagram
for steam is avail-
able in PHT.m. The
diagram can be
rotated.
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Figure 4.8 lllustration of an H-S (Mollier) diagram showing lines of
conslant entropy.

Another convenient representation of entropy is the H-S diagram (Mollier diagram). In this
diagram, lines of constant pressure are diagonal, and i1sotherms have a downward curvature as in
Fig. 4.8. The saturation curve is quite skewed.
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Liqu
4 / Vapor

Two-Phase Region —

Determining Turbine Outlet Conditions

(1) Reversible outlet one phase, actual outlet one phase;
(11) Reversible outlet two phase, actual outlet one phase;
(111) Reversible outlet two phase, actual outlet two phase.

Supercritical | ¢ pout
‘ actua} /
- ,  Vapor

Ligpd Liquid + Vapo

Tie Line

S

Figure 4.9 llusiration of a reversible and actual
(irreversible) turbine on a T-S diagram.

S

Figure 4.10 [lustration of need for guality

calcwlation on turbine outlet where
the actual outlet is saturated steam.

in Fig. 4.9 where the outlets for the reversible and irreversible cases are both one phase. Since the
reversible adiabatic turbine is isentropic, the line representing the reversible process must be verti-
cal. As shown in Fig. 4.10, if the upstream entropy 1s less than the saturated vapor entropy at the
outlet pressure, the reversible outlet ends up inside the liguid-vapor region, to the left of the satu-
rated vapor curve. In this case, we must perform a quality calculation to determine the vapor frac-
tion. Since the actual turbine must have an outlet state of higher entropy, due to entropy generation,
the outlet state can lie inside the phase envelope, on the saturation curve, or outside the phase enve-
lope, depending on the proximity of the reversible outlet state to the saturation curve and also
depending on the turbine efficiency. A frequent question 1s, “How do I know when I need a quality
calculation?” The calculation is required if the infet entropy is less than the saturation entropy at the
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Enthalpy h in kd/kg

Mollier-h, s Diagram

for Water Steam
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Example 4.13 Various cases of turbine outlet conditions

An adiabatic turbine inlet (state 1) is 500°C and 1.4 MPa. For each of the following outlet condi-
tions (state 2), determine the specified quantities.

(a) P,=0.6 MPa, ng=0.85. Find Wy, Hy, S5, and T.
(b) P;=0.03 MPa, 5= 0.85. Find I¥g Hy, Sy, and T;.
(¢) P,=0.01 MPa, 7g=0.9. Find Wy Hy, Sy, and T.

Note that using a common inlet state for each of the cases will permit us to skip the steps to
determine the inlet state as we work the different alternatives.

Solution: First, the inlet properties are determined: H; = 3474.8 kI’kg, S; = 7.6047 kI'’kg-K. The
reversible calculation is performed for each outlet condition, recognizing that a reversible tur-
bine is isentropic.

(a) Sy’ = §; = 7.6047 klikg-K. Comparing with §2%= 6.7593 kI/kg-K at P, = 0.6 MPa, S,' >
54V 5o the reversible outlet state is superheated and any irreversibility must lead to
greater entropy and greater superheat (case (i)). This is the case of Fig. 4.9. Interpolating:

T(C) H (kJikg) S (KI/kg-K)
350 3166.1 7.5481
7.6047
400 3270.8 7.7097
7.6047 — 7.5481
= b c——————— — =
H, 3166.1 7.7097—7.5481(3270.8 3166.1) = 3202.8 kI’kg

By similar interpolation, 7y =367.5°C.
AH = Wg'=3202.8 - 3474.8 =-272.0 kl’kg
Applying 5 calculation, AH = Wg= ng AH = 0.85(-272) = -231.2 kJ/kg,
Hy=H,+AH=34748 —231.2=13243.6 kl’kg

Preparing for interpolation:
T(°C) H (kJ’kg) S (kJ'kg-K)
350 3166.1 7.5481
3243.6
400 32708 7.7097
3243.6 - 3166.1
§, = 7.5481 + 33708 —3166.1 (7.7097 - 7.5481) = 7.6677 kJ’kg-K

By similar interpolation, 7, = 387.0°C. We see that irreversibility has warmed the outlet, but not
“heated” it, because it was adiabatic. With a one-phase outlet, T, = T, if < 1.

(b) The pressure is lower than part (a), and the saturated vapor § will be larger, and near
the saturation boundary.

Recall that S,' = §, = 7.6047 kJ/kg-K. Comparing with §%9=17 7675 kJ/kg-K at Py =0.03 MPa,
S = 5§ 5o the reversible outlet state is two-phase. This is the case of Fig. 4.10 and we need to
proceed further to determine if the actual state is inside or outside the phase envelope. Interpo-
lating using the saturation entropy values along with the ;' at T,' = 69.1°C,

v _ S-St 76047 —0.9441

q = 0.976
ASvap 6.8234

Using Eqn. 1.27:
H,' = 289.27 +0.976(2335.28) = 2568.5 kl’kg
AH' = Wy’ =2568.5 — 3474.8 = - 906.3 kl'’kg
Applying ng calculation, AH = W= np AH = 0.85(-906.3) = -770.35 kl/'kg,
Hy=H,+AH=3474.8 — 770.35 =2704.4 kJ'kg

Comparing H, with H%V= 2624.55 kl/kg at P, = 0.03 MPa, H, > H**, so the outlet state is
superheated (outside the phase envelope). This is an instance of case (ii).

To conclude the calculations, a double interpolation is required. Performing the first interpola-
tion between 0.01 and 0.05 MPa will bracket the outlet state. (Note: 0.03 MPa is halfway
between 0.01 and 0.05 MPa, so tabulated values are obtained by averaging rather than by a
slower interpolation.)

T(°C) H (kI’kg) S (kI'kg-K)
100 (2687.5 + 2682.4)/2 = 2684.95 (8.4489 + 7.6953)/2 =8.0721
2704 4
150 (2783.0 + 2780.2)/2 =2781.6 (8.6892 + 7.9413)/2=8.3153
Interpolating:
§, = 8.0721 + w(&?ﬂﬁ -8.0721) = 8.121 kJ/kg-K

2781.6 —2684.95
Similarly, by interpolation, 75 = 110.1°C.

Note: The reversible state is two-phase, and the actual outlet is one-phase for part (b). Also,
S, = 8,' = §, and H, > H,' which are always true for irreversible turbines. T, > T,', which is a
general result for one-phase output.

(c) Very low-outlet pressures shifts the saturation value of S to even higher values, making
it more likely that the outlet will be two phase, case (iii).

§' =5, = 7.6047 kI/kg-K. Comparing with §47= 8.1488 kJ/kg-K at P, = 0.01 MPa,

Sy' < §4% 50 the reversible outlet state is two-phase. This is the case of Fig. 4.10 and we need to
proceed further to determine if the actual state is inside or outside the phase envelope. Interpo-
lating at P = 0.01 MPa (7' =45.81°C),

v — 1.6047 - 0.6492

Ta906 00274




Using Eqn. 1.27,

H," = 191.81 +0.9274(2392.05) = 2410.2 kl'’kg

AH' = Wy =2410.3 — 3474.8 = — 1064.6 kI/kg
Applying g calculation, AH = Wg= ng AH = 0.90(~1064.6) = —958.1 klikg,
Hy=H, + AH=3474.8 — 958.1 = 2516.7 kJ/kg.

Comparing H, with F**"= 2583 86 kl/kg at P, = 0.01 MPa, H, < F**" 50 the actual outlet
state is two-phase as well as the reversible outlet (case (iii)). For the actual outlet, H, gives:

_ 2516.7-191.81
2392.05

= 0.972

Using Egn. 1.27,
S, = 0.6492 +0.972(7.4996) = 7.9388 kl’kg

The actual outlet is wet steam at 75, = 45.81°C. The reversible outlet and the actual outlet are
both wet steam for part (c). Also, S; = §'= 8§, and A, > H,' which are always true for irrevers-
ible turbines. For case (c), T, = 75", however g, = g5', a general result for a two-phase outlet.
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Example 4.14 Tuarbine efficiency calculation

An adiabatic turbine inlet is at 500°C and 1.4 MPa. Its outlet is at 0.0 MPa and g = 99%.

(a) Compute the work of the turbine.
(b) Compute the work of a reversible turbine.
(c) Compute the efficiency of the turbine and the entropy generation of the actual turbine.

Solution: The energy balance is AH = Wy,

(a) The inlet is the same as Example 4.13: H; = 3474 8; §,= 7.6047. At the outlet,

H, = 191.81 +0.99(2392.05) = 2559.9 kl'kg

AH = Wg=2559.9-3474.8 =-914 9 kl/’kg

(b) Entropy balance: AS'=0=> §,' =8, = 7.6047 kl’kg-K.

It is slightly ambiguous whether we should match the outlet pressure or the specification of
quality. By convention, it 1s assumed that pressure is the desired criterion (or temperature in a
similar situation) because this pertains to the physical constraints of the design. This means that

the reversible work is the same as Example 4.13(c) and Wy =-1064.6 kI’kg.

(c) The turbine efficiency is defined by 77g = W¢'W ¢ = 914.9/1064.6 = 85.9%.
The entropy generation is given by S, = 5 — §7.

S, = 0.6492 +0.99(7.4996) = 8.0738 klkg-K

Referring to the entropy balance, Sy =S, = 7.3046 so0 S, = 8.0738 — 7.6047 = 0.4691 J/g-K.
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Another type of calculation involves determining a turbine inlet that will result in a certain out-
let. The procedure is to use the outlet state to estimate the inlet entropy as a crude guess, and then
use trial and error inlet conditions until the desired outlet state 1s matched.

Example 4.15 Tuarbine inlet calculation given efficiency and outlet

An adiabatic turbine outlet (state 2) is 99% quality steam at 0.01 MPa, 7j; = 85%. The inlet pres-
sure has been specified as (.6 MPa. An absolute pressure of 0.6 MPa is conventionally defined
as low pressure steam and is often applied in chemical processing. Find Wg, H,, S,, and 7.

Solution: “Coincidentally,” the outlet properties were determined in Example 4.14:

H, = 2559.9; §, = 8.0738. Referring to the superheated steam tables at 0.6 MPa, we seck an
entropy value that is less than 8.0738 kI/kg-K because 77 < 100% means entropy is generated.
This occurs around 500°C. Trying 500°C, gives H, = 3483.4 kJ’kg and S, = 8.0041 kJ/’kg-K.
Then Wg=-923.5 kl/’kg; ¢' = (8.0041 — 0.6492)/7.4996 = 0.9807;

So H,'=191.8 + 0.9807(2392)=2537.6 kl’kg; Wg = 2537.6 — 3483.4 = —945.8 kl/'kg,

Wioat = 945.8 —923.5 =223 kl/’kg; ng=-923.5/(-923.5 - 22.3) = 97.7%.

Further trials generate the values tabulated below. The last temperature is estimated by interpo-
lation. (Hint: It would be great practice for you to compute these and check your answers.).

r H, S5 Wy Wiost Ne
450 3376.5 7.8611 -816.6 67.9 92.3%
400 32708 7.7097 ~710.9 116.2 86.0%
350 3166.1 7.5481 ~606.2 167.8 T8.3%

3938 32577 7.6895 ~697.8 122.6 85.0%
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Multistage Turbines

1 2 3 4 e oytall
| reversible |
path L
AR Vi
(a) Explicit representation of stages vy

V23
(h) Stages sharing a common housing, equivalent to (a) (c)
Figure 4.11 Hlustration that overall efficiency of an adiabatic turbine will be higher than the
efficiency of the individual stages.

slightly closcr-togcthcr at the bottom of the diz;gmm than at the top. The overall efficiency is .givcn
overall _ H4 - Hl

by g = =———— and the efficiency of an individual stage 1is given by
AH overall
Hi—H;

Ng i = . If we consider the reversible work as AH', ., that quantity must be smaller

i AH'.

than Z AH'; . In fact, because the isobar spacing i1s increasing to the right of the diagram, the

stages

vertical drop between any isobars on the line marked as the overall reversible path must be smaller
than the vertical drop between the same two isobars starting along the actual path (except for the
very first turbine). Therefore, the efficiency calculated for the overall system must be higher than
the efficiency for the individual stages. This comparison does not imply that staging turbines alters
their performance. The difference in efficiencies is due to differences in what is considered to be
the basis for the reversible calculation. The cautionary note to retain from this discussion is that the
distinction between overall or individual efficiencies is important when communicating the perfor-
mance of a staged turbine system.

Overall turbine
efficiency will be
greater than stage
efficiencies for the
same total work out-

put.
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4.10 PUMPS AND COMPRESSORS

Compressor
f

A

T - l
Pump revy| actual

59

Pump
rew v | oy Compressor
actual /,-' A

Figure 4.12 [llustrations of pathways for reversible and irreversible pumps and compressors. The P-H

diagram is for a system like Fig. 4.7(a).

straightforward. Consider the case where the inlet state and the outlet pressure 1s known. First, the
reversible outlet state is determined based on the isentropic condition, and the enthalpy at the
reversible state is known. The most common estimate for compressors is described in Example
2.12 on page 76. Even though it 1s intended for 1deal gases, it 1s convenient for many applications
and often provides a reasonable first approximation. The most common estimate for pumps 1is
described in Eqn. 2.32 on page 55. These both pertain to reversible processes. The efficiency can

then be used to determine the actual outlet enthalpy and work, using Eqn. 4.46.
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Example 4.16 Isothermal reversible compression of steam

In Example 2.12 on page 76, we mentioned that computing the work for isothermal compression
of steam was different from computing the work for an ideal gas. Now that you know about the
entropy balance, use it to compute the work of continuously, isothermally, and reversibly com-
pressing steam from 5 bars and 224°C to 25 bars. Compare to the result of the ideal gas formula.

Solution: Energy balance: AH = Q + W. Entropy balance: AS = Q/T. Note that AS # 0, even
though this is a reversible process. S, = 0, but the process is not adiabatic. From the steam
tables, we note that 224°C and 25 bars is practically equal to the saturated vapor. For the vapor
at 224°C and 25 bars, interpolation gives A =2910.5, §=7.1709. Noting Q0 = TAS,

0 =1(224 +273.15)(6.2558 — 7.1709) = -454.94; W=(2801.9 —2910.5) + 454.94 = 346.3 J/g.

By the ideal gas formula, ¥ = 8.314(4.04)(224 + 273.15)In(5)/18 = 1493.1 J/g.

The work is less for the real vapor because of the intermolecular attractions. The difference was
particularly large in this case because the final pressure was fairly high (= 10 bars).
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Multistage Compression

-

b= | )E |/

H A

Figure 4.13 Illustration of a mullistage compression and the corresponding P-H diagram. On the P-H
diagram, the compressors appear as the curves of increasing pressure and the heal exchangers
are the horizontal lines at constant pressure.

During adiabatic compression of vapors, the temperature rises. This can cause equipment problems
if the temperature rise or pressure ratio (P ““/P¥) is too large. To address this problem, interstage
cooling i1s used to lower the gas temperature between compression stages. Such operations are com-
mon when high pressures need to be reached. A schematic of a compressor with interstage cooling
1s shown in Fig. 4.13. The total work for multistage compression is generally given by summing the
work of each stage using Eqn. 2.69 on page 77. However, the ideal gas law becomes less reliable as
the stagewise inlet pressure increases. If the inlet pressure is above 10 bars and the reduced temper-
ature 1s less than 1.5, nonideality effects should be evaluated. Methods to evaluate gas non-ideali-
ties and to calculate entropy for all manner of non-ideal gases are discussed in Unit IT. For common
refrigerants, it is convenient to apply charts that are functionally equivalent to the steam tables. The
charts are difficult to read and precision is relatively low compared to using the steam tables.
Example 4.17 illustrates the procedure using the refrigerant R134a.

61



Example 4.17 Compression of R134a using P-H chart

A compressor operates on R134a. The inlet to the compressor is saturated vapor at —20°C. The
outlet of the compressor is at 7.7 bar and 7= 0.8. Find the reversible and required work (kJ/'kg)
and the outlet temperature of the compressor.

Solution: An inset of the P-H diagram from Appendix E is shown below. The axis labels and
superheated temperature labels have been translated on the inset diagram.

The inlet state is located at the intersection of the —20°C isotherm and the saturated vapor line.
The enthalpy is found by following the vertical lines to the axis and H = 386.5 kI’kg. (Note: This
accurate value was found from the accompanying saturation table, but the schematic value is
consistent, though less accurate.) The reversible outlet state is found by following an isentropic
state up to 7.7 bars. One set of the diagonal lines are isentropes, and we visually interpolate to
keep the same relative position between the isentropes at 7.7 bar at the state labeled 2'. By fol-
lowing the vertical lines to the axis, H,'= 424 kI’kg. The reversible work is Wy'= 424 — 386.5 =
37.5 kJ'kg. The actual work is Wg= W'/ 0.8 =47 kl/kg. The actual outlet state is shifted to the
right at 7.7 bar at an enthalpy value of H, = 386.5 + 47 = 433.5 kJ/’kg. The reversible outlet is
just near 38°C. The actual outlet is near 48°C.
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0 Problem state-
ments will raraly
explicitly point out

enfropy generation,

g0 you will need to
look for causes.

Before beginning more examples, it is also helpful to keep in mind those processes which gener-
ate entropy. This is important because, in the event that such processes arise, the entropy-generation
term cannot be set to zero unless we modify the process to eliminate the source of the generation.
Entropy is generated by the following processes.

I. Heat conduction along a temperature gradient.
2. Diffusion along a concentration gradient.

3. Mixing of substances of different composition.
4.

Adiabatic mixing at constant system volume of identical substances imitially at different
molar entropies due to (7, P) differences.

5. Velocity gradients within equipment. This is accounted for in pipe flow by the friction fac-
tor developed in textbooks on fluid flow.

6. Friction.

7. Electrical resistance.

8. Chemical reactions proceeding at measurable rates.
In an open system, irreversibilities are always introduced when streams of different temperatures
are mixed at constant pressure (item 4 above) because we could have obtained work by operating a
heat engine between the two streams to make them i1sothermal before mixing,. If the streams are 1sother-

mal, but of different composition, mixing will still generate entropy (e.g., sce Eqn. 4.8 on page 138), and
we have not yet devised a general method to obtain work from motion on this molecular scale.

As chemical engineers, it is important to recognize that all chemical reactions proceeding at a

Bt wnbn svamarntn anteasmses Tha fsndnmaantnl savnnf A tlan sn mvnsndad s Coasdenem 17T 14 nnd snmsisean
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4.12 OPTIMUM WORK AND HEAT TRANSFER

Let us consider how to calculate the optimum work interactions for a general system. For an open
system where kinetic energy and potential energy changes are negligible,

dU = Z Hindnin — Z Hout gnout +d(__)__PdV+dW'S 4.50
inlcts outlets
das = Singpin Sout Jpnout 4 aQ +dS 451
D = ZL n - Z L n 7_'_ “gen *
inlcts outlets s

where dS,,, = 0 for an internally reversible process. If all the heat is transferred at a single temper-
ature T, elimmation of dQ in the first balance provides

Sye
dL" — Z (Hm . Tsyssin)d"in . Z (Hout _ Ts}lssout)dnout 4.52
mlets outlcts
+ Ty dS—PdV+dWe—T dS, .,
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Josiah Willard Gibbs

dU = TdS ~ pdV + Y ;AN

where T is the absolute temperature, p is the pressure, dS is an infinitesimal
change in entropy and dVis an infinitesimal change of volume. The last term is
the sum, over all the chemical species in a chemical reaction, of the chemical
potential, u, of the /" species, multiplied by the infinitesimal change in the
number of moles, dN, of that species. By taking the Legendre transform of this
expression, he defined the concepts of enthalpy, H and Gibbs free energy, G.

Gypr =H-TS
This compares to the expression for Helmholtz free energy, A.
f‘[.-"", = L}' - ]~S

When the Gibbs free energy for a chemical reaction is negative the reaction will
proceed spontaneously. When a chemical system is at equilibrium, the change
in Gibbs free energy is zero. An equilibrium constant is simply related to the
free energy change when the reactants are in their standard states.

AGH RT'In K

Chemical potential is usually defined as partial molar Gibbs free energy.

( oG )
I -
ON;, PN,
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tesimal temperature differences will be infinitesimally slow. The surrounding’s temperature and
pressure (7, and P} are often considered the dead state, because when the system reaches this T
and P, energy input of some type is necessary to obtain expansion/contraction work, shaft work, or
heat transfer; without energy input the process is dead. However, departures from this dead state do
provide opportunities for work and heat interactions. Further, it is desirable to give a name to the
combination of vanables that results. For the combination of variables in the summations of Egn.
4.52 modified with 7, we will use the term availability, or exergy, B,

B =H-T§ availability or exergy 453

where H and § are state properties of the system at 7 and P, but 7, is the temperature of the dead
state. The terms “availability” and “exergy™ are both used in literature for this property. At a given
T and P, the availability changes with T, so B is somewhat different from other state properties
used to this point. Inserting the availability into Eqn. 4.52, and collecting the state changes of the

system on the left-hand side, results in a general balance (ignoring kinetic and potential energy like
before),

“&en

dU+PdV~T,dS =} (B")dni"— " (BoU)dn®4t +dW s~ T,dS 454

inlets outlets
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A potential for every thermodynamic situation | edit)
In additionto U and U [u] the other thermodynamic potentials are frequently used 10 determine exergy. For a given set of chemicals at a given entropy

and pressure, enthalpy H is used in the expression:
B=H ~TgS (5)

For a given set of chemicals at a given temperature and volume, Helmholtz free energy A is used in the expression:
B = A+ PRV (6)

For a given set of chemicals at a given temperature and pressure, Gibbs free energy G is used in the expression:
B=G (7)

The potentials A and G are utilized for a constant temperature process. In these cases, all energy is free to perform useful work because there is no
entropic loss. A chemical reaction that generates electricity with no associated change in temperature will also experience no entropic loss. (See Fuel
cell.) This is true of every isothermal process. Examples are gravitational potential energy, kinetic energy (on a macroscopic scale), solar energy,
electrical energy, and many others. If friction, absorption, electrical resistance or a similar energy conversion takes place that releases heat, the impact
of that heat on thermodynamic potentials must be considered, and it is this impact that decreases the available energy.

Applications |edi)
Applying equation (1) to a subsystem yields:

dB | >0, %’- = maximum power generated
m i (14)

<0, 7 = minimum power required

This expression applies equally well for theoretical ideals in a wide variety of applications: electrolysis (decrease in G), galvanic cells and fuel cells
(increase in G), explosives (increase in A), heating and refrigeration (exchange of H), motors (decrease in U) and generators (increase in U).

< 0 is equivalent to total -, 0 (1)

dt dt  ~
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One goal of energy and exergy methods in engineering is to compute what comes into and out of several possible designs before a factory is built.
Energy input and output will always balance according to the First Law of Thermodynamics or the energy conservation principle. Exergy output will not
balance the exergy input for real processes since a part of the exergy input is always destroyed according to the Second Law of Thermodynamics for
real processes. After the input and output are completed, the engineer will often want to select the most efficient process. An energy efficiency or first
law efficiency will determine the most efficient process based on wasting as little energy as possible relative to energy inputs. An exergy efficiency or

second-law efficiency will determine the most efficient process based on wasting and destroying as little available work as possible from a given input of
available work.

Design engineers have recognized that a higher exergy efficiency involves superior design and often leads to a higher return on investment. For
example, in the case of allocating roof space for solar energy collection between thermal systems and photovoltaic technology, photovoltaic thermal
hybrid solar collector technology provide the highest exergy efficiency and optimized solution.[®]
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Steady-State Flow

For a system at steady-state flow, all terms on the left-hand side drop out, resulting in

z (Brmt)dnout_ Z (Bin)dnin = dLVS_ Tod‘sgen

steady-state open system 4.55

outlets inlets

and we conclude that the difference in availability from the inlets to outlets is related to the opti-
mum shaft work. Note that T,dS,., = 0 and always subtracts from work input when dWg 2 0 which
means work input for an irreversible process 1s always greater than a reversible process for a given

Closed System
For a closed system, Egn. 4.54 becomes

dU+ PdV - Todé' = dﬂ’s - Todsgen closed system 4.57

For a constant-pressure closed system, FdP can be added to the left side (because it is zero in mag-
nitude), which then results in dU + PdV + VdP = dU + d(PV) = dH. Thus, the left-hand side can be
replaced with dB, though it is usually easier to calculate dH and T 4S independently. We can define
the Gibbs energy G = H — T§. Then dG = dU + PdV + VdP — TdS — SdT. Thus, if the pressure 1s
constant and the temperature is constant at 7, then the change in Gibbs energy 1s related to the non-
expansion/contraction work. Another interesting analysis can be done if both work terms are on the

right-hand side of the equation:

dU — TodS = dP_VS— PdV—-T dS closed system 4,58

o “gen

We can define the Helmholtz energy A = U — TS. Then dA4 = dU — TdS — SdT. When the system is
1sothermal at 7| then the change in Helmholtz energy is related to the sum of all forms of work.
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Example 4.18 Minimum heat and work of purification®

Products produced by biological systems can range over mole fractions from 107" to 107°.

(a) Estimate the minimum reversible heat and work requirement to purify one mole of product at
298.15 K over this range.
(b) To understand the concentrations in dilute mixtures, calculate the mole fraction of insulin in
0.1wt% aqueous solution.

Solution: The work is from Egn. 4.67, and the heat will have the opposite sign.

“RT(x)Inx; +x;Inx;) . 7,

Xy ny

Forx, = 0.10, x; = 0.9. At 298.15K,
W, /11, =-8.314(298.15)(0.1In(0.1) + 0.9In(0.9)) / 0.1 = 8_1kJ

Repeating the calculation for other values of x;:.

Xq w! | 1wt ot o’ | ot | 1w | 1wt | 10?

E"/fzz (kI/mol) 8.1 139 | 196 | 253 | 31.0 | 367 | 424 | 481 | 538

Note that heat must be rejected. If a process 1s envisioned that requires heat, then the rejected
heat must be increased by an equal amount. For example, if a solution of concentration x, =0.10
1s purified by adding 1 kJ of heat, then 9.1 kJ must be rejected.

(b) Searching for the molecular weight of insulin reveals a value of 5808 g/mol. Therefore,
x; = 0.001/5808 = l.72(10'7). The point is that biomolecules are often large, and therefore their
concentrations can be quite small on a mole fraction basis.
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4.14 UNSTEADY-STATE OPEN SYSTEMS

Example 4.19 Entropy change in a leaky tank

Consider air (an ideal gas) leaking from a tank. How does the entropy of the gas in the tank
change? Use this perspective to develop a relation between 7 and P’ and compare it to the
expression we obtained previously by the energy balance.

— — — — — —

g \
{../I",T‘—z’ﬂ,ﬂ); > P
(SN y,

\' ————— —

Solution:
m-Balance: dn = — dn”"

out
S-Balance: di‘%& =5 md';t = ndS+ Sdn = -5 mdnm”

But physically, we know that the leaking fluid is at the same state as the fluid in the tank; there-

fore, the S-balance becomes ndS + Sdn = —S§° :ﬁ"":inom, or AS = 0.
For an ideal gas with a constant heat capacity:
AS = CpyIn(T,/Ty) +RIn(V,/¥,) = 0 (Fig)
AS = CyIn(T,/T))+ RIn((T,P,)/(P,T})) = (Cp, +R)In(T,/T|)—RIn(P,/P;) (ig)

(R/Cp) "
(T,/T,) = (Py,/P)) (Fig)
Compare with Example 2.15 on page 81. The entropy balance and energy balance in this case

are not independent. Either can be used to derive the same result. This also shows that our anal-
ysis in Example 2.15 was assumed to be reversible.
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Example 4.20 An ideal gas leaking through a turbine (unsteady state)

A portable power supply consists of a 28-liter bottle of compressed helium, charged to 13.8 MPa
at 300 K, connected to a small turbine. During operation, the helium drives the turbine continu-
ously until the pressure in the bottle drops to 0.69 MPa. The turbine exhausts at 0.1 MPa.
Neglecting heat transfer, calculate the maximum possible work from the turbine. Assume helium
to be an ideal gas with Cp =20.9 J'mol-K.

Ve ~ Ws

Poul 7'ml{

Consider a balance on the fank only. The result of the balance will match the result of Example
4.19.

Writing an entropy balance for a reversible adiabatic furbine only,

(§7 - §")n =0 =A5=0
which shows that the turbine also does not change the molar entropy. Thus, the molar entropy of
the exiting fluid is the same as the entropy in the tank, which is identical to the molar entropy at
the start of the process. Therefore, the molar entropy and the pressure of the exiting gas are
fixed. Since only two intensive properties fix all other intensive properties for a pure fluid, the
exiting temperature is also fixed. The relation for an ideal gas along a reversible adiabat gives:

(*ig)

(*ig)

T =T (Pt / PYRCr =423 K
Likewise: T/ = 7' (P / PHY*Cr =911 K

Solution by overall energy balance:

dnU) = H* dn + dWgand H* is fixed since T°* P are fixed; therefore, we may apply hint
4(a) from Section 2.14.

Integrating this expression:
WU - n'U = H“mf — o) + W
Rearranging:

W, = o (U — By - n'(U - B 4.70

Determining variables in the equation:

n = P/ VRT, n' = 25 5gmol; n' = 154.9 gmol (ig)

Choose reference temperature, Ty = 300 K, = setting Uy = 0, then since Hp = Uy + (PF)p, and
since the fluid is an ideal gas, Cp= Cp— R =20.9 — 8.314 = 12.586 J/mol-K:

Hg = (PV)p = RTy = R(300) (ig) 4.71
Note: = H(T) = Cp(T— Ty) + Hy = Cp(T—300) + R(300) (*ig)
HP = 2892 J/mol (*ig)

U = CUT—Tp)+ Uy = 2629 Jimol ; U' =0 (*ig)

Now, plugging into Eqn. 4.70:
Fo=25.5(-2629 +2892) — 154.9(0 + 2892)

= Wg=—441200T
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